A Correcting Note on Forecasting Conditional Variance Using ARIMA vs. GARCH Model
نویسندگان
چکیده
منابع مشابه
Gold Price Forecasting Using ARIMA Model
This study gives an inside view of the application of ARIMA time series model to forecast the future Gold price in Indian browser based on past data from November 2003 to January 2014 to mitigate the risk in purchases of gold. Hence, to give guideline for the investor when to buy or sell the yellow metal. This financial instrument has gained a lot of momentum in recent past as Indian economy is...
متن کاملTraffic Modeling and Prediction using ARIMA/GARCH Model
The predictability of network traffic is a significant interest in many domains such as congestion control, admission control, and network management. An accurate traffic prediction model should have the ability to capture prominent traffic characteristics, such as long-range dependence (LRD) and self-similarity in the large time scale, multifractal in small time scale. In this paper we propose...
متن کاملArima/garch (1,1) Modelling and Forecasting for a Ge Stock Price Using R
This article attempts to present a basic method of time series analysis, modelling and forecasting performance of ARIMA, GARCH (1,1) and mixed ARIMA GARCH (1,1) models using historical daily close price downloaded through the yahoo finance website from the NASDAQ stock exchange for GE company (USA) during the period of 2001 to 2014. This paper also presents a brief analysis technique introducti...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولA note on GARCH model identification
Financial returns are often modeled as autoregressive time series with innovations having conditional heteroscedastic variances, especially with GARCH processes. The conditional distribution in GARCH models is assumed to follow a parametric distribution. Typically, this error distribution is selected without justification. In this paper, we have applied the results of Thavaneswaran and Ghahrama...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Economics and Finance
سال: 2019
ISSN: 1916-9728,1916-971X
DOI: 10.5539/ijef.v11n5p145